Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.759
Filtrar
1.
Immun Inflamm Dis ; 12(4): e1243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577988

RESUMO

OBJECTIVE: To explore the role of interleukin (IL)-17 in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) and to investigate its possible mechanism on pulmonary artery smooth muscle cells (PASMCs). METHODS: Enzyme-linked immunosorbent assay (ELISA) were used to compare levels of serum IL-17 in patients with CTD-PAH and healthy controls (HCs). After treatment for 3 months, the serum IL-17 levels were tested in CTD-PAH. ELISA and immunohistochemistry were used to compare levels of serum IL-17 and numbers of pulmonary artery IL-17+ cells, respectively, in a rat model of monocrotaline-induced PAH and untreated rats. Proliferation, migration, and inflammatory factors expression of PASMCs were assessed after stimulation with different concentrations of IL-17 for various time periods. Proteins in the mitogen-activated protein kinase (MAPK) pathway were examined by western blot. RESULTS: Levels of IL-17 were upregulated in patients with CTD-PAH compared to HCs. After 3 months of treatment, serum IL-17 levels were downregulated with pulmonary artery pressure amelioration. Moreover, serum IL-17 levels and numbers of IL-17+ cells infiltrating lung arterioles were increased in PAH model rats. IL-17 could dose- and time-dependently promote proliferation and migration of PASMCs as well as time-dependently induce IL-6 and intercellular cell adhesion molecule-1 (ICAM-1) expression. The levels of MKK6 increased after IL-17 treatment. Inhibition of MAPK decreased proliferation of PASMCs. CONCLUSION: Levels of IL-17 may increase in CTD-PAH, and IL-17 promotes proliferation, migration, and secretion of IL-6 and ICAM in PASMCs, respectively, which likely involves the p-38 MAPK pathway.


Assuntos
Interleucina-17 , Miócitos de Músculo Liso , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Proliferação de Células , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Interleucina-6/metabolismo , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo
2.
Cell Mol Life Sci ; 81(1): 164, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575795

RESUMO

Diabetic hyperglycemia induces dysfunctions of arterial smooth muscle, leading to diabetic vascular complications. The CaV1.2 calcium channel is one primary pathway for Ca2+ influx, which initiates vasoconstriction. However, the long-term regulation mechanism(s) for vascular CaV1.2 functions under hyperglycemic condition remains unknown. Here, Sprague-Dawley rats fed with high-fat diet in combination with low dose streptozotocin and Goto-Kakizaki (GK) rats were used as diabetic models. Isolated mesenteric arteries (MAs) and vascular smooth muscle cells (VSMCs) from rat models were used to assess K+-induced arterial constriction and CaV1.2 channel functions using vascular myograph and whole-cell patch clamp, respectively. K+-induced vasoconstriction is persistently enhanced in the MAs from diabetic rats, and CaV1.2 alternative spliced exon 9* is increased, while exon 33 is decreased in rat diabetic arteries. Furthermore, CaV1.2 channels exhibit hyperpolarized current-voltage and activation curve in VSMCs from diabetic rats, which facilitates the channel function. Unexpectedly, the application of glycated serum (GS), mimicking advanced glycation end-products (AGEs), but not glucose, downregulates the expression of the splicing factor Rbfox1 in VSMCs. Moreover, GS application or Rbfox1 knockdown dynamically regulates alternative exons 9* and 33, leading to facilitated functions of CaV1.2 channels in VSMCs and MAs. Notably, GS increases K+-induced intracellular calcium concentration of VSMCs and the vasoconstriction of MAs. These results reveal that AGEs, not glucose, long-termly regulates CaV1.2 alternative splicing events by decreasing Rbfox1 expression, thereby enhancing channel functions and increasing vasoconstriction under diabetic hyperglycemia. This study identifies the specific molecular mechanism for enhanced vasoconstriction under hyperglycemia, providing a potential target for managing diabetic vascular complications.


Assuntos
Diabetes Mellitus Experimental , Angiopatias Diabéticas , Hiperglicemia , Animais , Ratos , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Constrição , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/metabolismo , Glucose/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos Sprague-Dawley
3.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589444

RESUMO

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferons , Células Endoteliais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
4.
Cell Mol Biol Lett ; 29(1): 47, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589823

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.


Assuntos
Glucosefosfato Desidrogenase , Músculo Liso Vascular , Canal de Ânion 1 Dependente de Voltagem , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Becaplermina/genética , Becaplermina/metabolismo , Proliferação de Células , Proteína X Associada a bcl-2/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Músculo Liso Vascular/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Apoptose , Miócitos de Músculo Liso/metabolismo , Movimento Celular/genética , Células Cultivadas , Fenótipo
5.
Biochem Biophys Res Commun ; 710: 149863, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38579535

RESUMO

Vascular calcification is an important factor in the high morbidity and mortality of Cardiovascular and cerebrovascular diseases. Vascular damage caused by calcification of the intima or media impairs the physiological function of the vascular wall. Inflammation is a central factor in the development of vascular calcification. Macrophages are the main inflammatory cells. Dynamic changes of macrophages with different phenotypes play an important role in the occurrence, progression and stability of calcification. This review focuses on macrophage polarization and the relationship between macrophages of different phenotypes and calcification environment, as well as the mechanism of interaction, it is considered that macrophages can promote vascular calcification by releasing inflammatory mediators and promoting the osteogenic transdifferentiation of smooth muscle cells and so on. In addition, several therapeutic strategies aimed at macrophage polarization for vascular calcification are described, which are of great significance for targeted treatment of vascular calcification.


Assuntos
Músculo Liso Vascular , Calcificação Vascular , Humanos , Calcificação Vascular/genética , Macrófagos , Osteogênese , Fenótipo , Miócitos de Músculo Liso
6.
FASEB J ; 38(7): e23592, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581243

RESUMO

Vascular calcification is an actively regulated biological process resembling bone formation, and osteogenic differentiation of vascular smooth muscle cells (VSMCs) plays a crucial role in this process. 1-Palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), an oxidized phospholipid, is found in atherosclerotic plaques and has been shown to induce oxidative stress. However, the effects of POVPC on osteogenic differentiation and calcification of VSMCs have yet to be studied. In the present study, we investigated the role of POVPC in vascular calcification using in vitro and ex vivo models. POVPC increased mineralization of VSMCs and arterial rings, as shown by alizarin red staining. In addition, POVPC treatment increased expression of osteogenic markers Runx2 and BMP2, indicating that POVPC promotes osteogenic transition of VSMCs. Moreover, POVPC increased oxidative stress and impaired mitochondria function of VSMCs, as shown by increased ROS levels, impairment of mitochondrial membrane potential, and decreased ATP levels. Notably, ferroptosis triggered by POVPC was confirmed by increased levels of intracellular ROS, lipid ROS, and MDA, which were decreased by ferrostatin-1, a ferroptosis inhibitor. Furthermore, ferrostatin-1 attenuated POVPC-induced calcification of VSMCs. Taken together, our study for the first time demonstrates that POVPC promotes vascular calcification via activation of VSMC ferroptosis. Reducing the levels of POVPC or inhibiting ferroptosis might provide a novel strategy to treat vascular calcification.


Assuntos
Cicloexilaminas , Ferroptose , Fenilenodiaminas , Calcificação Vascular , Humanos , Músculo Liso Vascular/metabolismo , Fosfolipídeos/metabolismo , Fosforilcolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteogênese , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
7.
Physiol Rep ; 12(7): e15999, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38610069

RESUMO

Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Quinase I-kappa B , Miócitos de Músculo Liso , Artéria Pulmonar , Remodelação Vascular
8.
Sci Rep ; 14(1): 8615, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616192

RESUMO

Diabetes mellitus (DM) is a significant risk factor for peripheral arterial disease (PAD), and PAD is an independent predictor of cardiovascular disorders (CVDs). Growing evidence suggests that long non-coding RNAs (lncRNAs) significantly contribute to disease development and underlying complications, particularly affecting smooth muscle cells (SMCs). So far, no study has focused on transcriptome analysis of lncRNAs in PAD patients with and without DM. Tissue samples were obtained from our Vascular Biobank. Due to the sample's heterogeneity, expression analysis of lncRNAs in whole tissue detected only ACTA2-AS1 with a 4.9-fold increase in PAD patients with DM. In contrast, transcriptomics of SMCs revealed 28 lncRNAs significantly differentially expressed between PAD with and without DM (FDR < 0.1). Sixteen lncRNAs were of unknown function, six were described in cancer, one connected with macrophages polarisation, and four were associated with CVDs, mainly with SMC function and phenotypic switch (NEAT1, MIR100HG, HIF1A-AS3, and MRI29B2CHG). The enrichment analysis detected additional lncRNAs H19, CARMN, FTX, and MEG3 linked with DM. Our study revealed several lncRNAs in diabetic PAD patients associated with the physiological function of SMCs. These lncRNAs might serve as potential therapeutic targets to improve the function of SMCs within the diseased tissue and, thus, the clinical outcome.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Doença Arterial Periférica , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Doença Arterial Periférica/genética , Miócitos de Músculo Liso , Perfilação da Expressão Gênica
9.
Sci Rep ; 14(1): 8670, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622371

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Artéria Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Autofagia/genética , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular
11.
Front Endocrinol (Lausanne) ; 15: 1369369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660518

RESUMO

Aims: To determine the roles of matrix metallopeptidase-9 (MMP9) on human coronary artery smooth muscle cells (HCASMCs) in vitro, early beginning of atherosclerosis in vivo in diabetic mice, and drug naïve patients with diabetes. Methods: Active human MMP9 (act-hMMP9) was added to HCASMCs and the expressions of MCP-1, ICAM-1, and VCAM-1 were measured. Act-hMMP9 (n=16) or placebo (n=15) was administered to diabetic KK.Cg-Ay/J (KK) mice. Carotid artery inflammation and atherosclerosis measurements were made at 2 and 10 weeks after treatment. An observational study of newly diagnosed drug naïve patients with type 2 diabetes mellitus (T2DM n=234) and healthy matched controls (n=41) was performed and patients had ultrasound of carotid arteries and some had coronary computed tomography angiogram for the assessment of atherosclerosis. Serum MMP9 was measured and its correlation with carotid artery or coronary artery plaques was determined. Results: In vitro, act-hMMP9 increased gene and protein expressions of MCP-1, ICAM-1, VCAM-1, and enhanced macrophage adhesion. Exogenous act-hMMP9 increased inflammation and initiated atherosclerosis in KK mice at 2 and 10 weeks: increased vessel wall thickness, lipid accumulation, and Galectin-3+ macrophage infiltration into the carotid arteries. In newly diagnosed T2DM patients, serum MMP9 correlated with carotid artery plaque size with a possible threshold cutoff point. In addition, serum MMP9 correlated with number of mixed plaques and grade of lumen stenosis in coronary arteries of patients with drug naïve T2DM. Conclusion: MMP9 may contribute to the initiation of atherosclerosis and may be a potential biomarker for the early identification of atherosclerosis in patients with diabetes. Clinical trial registration: https://clinicaltrials.gov, identifier NCT04424706.


Assuntos
Aterosclerose , Biomarcadores , Diabetes Mellitus Tipo 2 , Metaloproteinase 9 da Matriz , Placa Aterosclerótica , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Animais , Biomarcadores/metabolismo , Camundongos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Aterosclerose/metabolismo , Aterosclerose/patologia , Idoso , Diagnóstico Precoce , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Diabetes Mellitus Experimental , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/patologia , Vasos Coronários/metabolismo
12.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 48-53, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650154

RESUMO

Plentiful studies have clarified miRNAs take on a key role in the sexual dysfunction of diabetic rats. This study aimed to figure out microRNA (miR)-503-5p/SYDE2 axis' latent mechanisms in streptozotocin-induced diabetic rat sexual dysfunction. A model of erectile dysfunction (ED) in diabetic rats was established by injecting streptozotocin. MiR-503-5p and SYDE2 in ED rats were altered by injection of miR-503-5p mimic or si/oe-SYDE2. The targeting link between miR-503-5p and SYDE2 was testified. ICP/MAP value was tested by pressure sensor; Penile capillary abundance was assessed; Penile cGMP and AGEs were detected; penile smooth muscle cell apoptosis was assessed; MiR-503-5p and SYDE2 were tested. In streptozotocin-induced ED rats, miR-503-5p was reduced and SYDE2 was elevated. Elevating miR-503-5p or silencing of SYDE2 can enhance penile erection rate, ICP/MAP value, capillary abundance, and cGMP but reduce AGEs and penile smooth muscle cell apoptosis rate in ED rats. Strengthening SYDE2 with elevating miR-503-5p turned around the accelerating effect of elevated miR-503-5p on penile erection in ED rats. SYDE2 was a downstream target gene of miR-503-5p. MiR-503-5p protects streptozotocin-induced sexual dysfunction in diabetic rats by targeting SYDE2.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Regulação para Baixo , Disfunção Erétil , MicroRNAs , Pênis , Ratos Sprague-Dawley , Animais , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Disfunção Erétil/genética , Disfunção Erétil/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Apoptose/genética , Regulação para Baixo/genética , Pênis/patologia , Estreptozocina , Ereção Peniana , Ratos , GMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos de Músculo Liso/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
13.
BMC Cardiovasc Disord ; 24(1): 221, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654161

RESUMO

In this study, we sought to investigate the mechanisms of action of miR-195-5p in the osteogenic differentiation of vascular smooth muscle cells (VSMCs), and thereby provide novel insights and a reference for the targeted therapy of arterial media calcification. VSMC differentiation was induced using sodium ß-glycerophosphate, and we investigated the effects of transfecting cells with miR-195-5p mimics, vectors overexpressing Smad7, and the Wnt/ß-catenin pathway inhibitor (KYA1797K) on VSMC differentiation by determining cell viability and apoptosis, and the mRNA and protein expression of factors associated with osteogenic differentiation and the Wnt/ß-catenin pathway. The results revealed that miR-195-5p mimics enhanced the osteogenic differentiation of VSMCs induced by ß-glycerophosphate, whereas the overexpression of Smad7 reversed this phenomenon. In addition, KYA1797K was found to promote the effects of Smad7 overexpression. In conclusion, by targeting, Smad7, miR-195-5p promotes the Wnt/ß-catenin pathway. and thus the osteogenic differentiation of VSMCs. These findings will provide a reference for elucidating the mechanisms whereby miR-195-5p regulates osteogenic differentiation.


Assuntos
Diferenciação Celular , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Osteogênese , Proteína Smad7 , Via de Sinalização Wnt , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Smad7/metabolismo , Proteína Smad7/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Osteogênese/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Células Cultivadas , Apoptose , Animais , beta Catenina/metabolismo , beta Catenina/genética , Regulação da Expressão Gênica , Glicerofosfatos/farmacologia , Humanos
14.
FASEB J ; 38(6): e23557, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498343

RESUMO

Phenotypic switching of vascular smooth muscle cells (VSMCs) is essential for atherosclerosis development. Circular RNA (circRNA) is a specific non-coding RNA that is produced as a closed-loop structure in mammals, and its specific expression pattern is closely related to its cell type and tissue. To clarify the roles of circTLK1 in VSMC phenotypic switching, we performed qRT-PCR, immunoblotting, and immunostaining. qRT-PCR revealed that circTLK1 was upregulated in both mouse models of atherosclerosis in vivo and PDGF (platelet-derived growth factor)-BB-induced VSMCs in vitro. Furthermore, the overexpression of circTLK1 promoted PDGF-BB-induced VSMC phenotypic switching. Conversely, experiments performed in vivo demonstrate that the knockdown of SMC-specific circTLK1 led to a reduction in the development of atherosclerosis. The relationship between circTLK1 and miR-513a-3p and Krüppel-like factor 4 (KLF4) was detected by RNA immunoprecipitation (RIP), luciferase reporter assay, RNA pull-down, and RNA fluorescence in situ hybridization (RNA FISH). Mechanistically, circTLK1 acted as a sponge for miR-513a-3p, leading to the upregulation of KLF4, a key transcription factor for phenotypic switching. Targeting the circTLK1/miR-513a-3p/KLF4 axis may provide a potential therapeutic strategy for atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Hibridização in Situ Fluorescente , Aterosclerose/genética , Aterosclerose/metabolismo , Becaplermina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Miócitos de Músculo Liso/metabolismo , Movimento Celular/genética , Mamíferos/metabolismo
15.
J Int Med Res ; 52(3): 3000605241234567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530015

RESUMO

OBJECTIVE: Vascular calcification is a common chronic kidney disease complication. This study aimed to investigate the function of long non-coding RNA (LncRNA) H19 in vascular calcification to explore new therapeutic strategies. METHODS: We induced osteogenic differentiation and calcification of vascular smooth muscle cells (VSMCs) using ß-glycerophosphate. Then, we detected the LncRNA H19 promoter methylation status and Erk1/2 pathways using methylation-specific polymerase chain reaction and western blotting, respectively. RESULTS: Compared with the control group, high phosphorus levels induced VSMC calcification, accompanied by increases in LncRNA H19 and the osteogenic marker Runx2 and reduction of the contractile phenotype marker SM22a. LncRNA H19 knockdown inhibited osteogenic differentiation and calcification of VSMCs. However, the suppressed role of VSMC calcification caused by shRNA H19 was partially reversed by simultaneous activation of the Erk1/2 pathways. Mechanically, we found that the methylation rate of CpG islands in the LncRNA H19 promoter region was significantly lower in the high-phosphorus group, and the hypomethylation state elevated LncRNA H19 levels, which in turn regulated phosphorylated Erk1/2 expression. CONCLUSIONS: LncRNA H19 promoted osteogenic differentiation and calcification of VSMCs by regulating the Erk1/2 pathways. Additionally, hypomethylation of LncRNA H19 promoter CpG islands upregulated LncRNA H19 levels and subsequently activated Erk1/2 phosphorylation.


Assuntos
RNA Longo não Codificante , Calcificação Vascular , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Músculo Liso Vascular , Osteogênese/genética , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Regiões Promotoras Genéticas , Fósforo , Miócitos de Músculo Liso , Células Cultivadas
16.
BMC Cardiovasc Disord ; 24(1): 180, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532364

RESUMO

BACKGROUND: Acute type A aortic dissection (AAAD) is a devastating disease. Human aortic smooth muscle cells (HASMCs) exhibit decreased proliferation and increased apoptosis, and integrin α5ß1 and FAK are important proangiogenic factors involved in regulating angiogenesis. The aim of this study was to investigate the role of integrin α5ß1 and FAK in patients with AAAD and the potential underlying mechanisms. METHODS: Aortic tissue samples were obtained from 8 patients with AAAD and 4 organ donors at Zhongshan Hospital of Fudan University. The level of apoptosis in the aortic tissues was assessed by immunohistochemical (IHC) staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assays. The expression of integrin α5ß1 and FAK was determined. Integrin α5ß1 was found to be significantly expressed in HASMCs, and its interaction with FAK was assessed via coimmunoprecipitation (Co-IP) analysis. Proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8) assays and flow cytometry after integrin α5ß1 deficiency. RESULTS: The levels of integrin α5ß1 and FAK were both significantly decreased in patients with AAAD. Downregulating the expression of integrin α5ß1-FAK strongly increased apoptosis and decreased proliferation in HASMCs, indicating that integrin α5ß1-FAK might play an important role in the development of AAAD. CONCLUSIONS: Downregulation of integrin α5ß1-FAK is associated with increased apoptosis and decreased proliferation in aortic smooth muscle cells and may be a potential therapeutic strategy for AAAD.


Assuntos
Dissecção Aórtica , Integrina alfa5beta1 , Humanos , Aorta/metabolismo , Apoptose , Integrina alfa5beta1/metabolismo , Miócitos de Músculo Liso/metabolismo
17.
Regen Med ; 19(3): 135-143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440898

RESUMO

Many vascular disorders arise as a result of dysfunctional smooth muscle cells. Tissue engineering strategies have evolved as key approaches to generate functional vascular smooth muscle cells for use in cell-based precision and personalized regenerative medicine approaches. This article highlights some of the challenges that exist in the field and presents some of the prospects for translating research advancements into therapeutic modalities. The article emphasizes the need for better developing synergetic intracellular and extracellular cues in the processes to generate functional vascular smooth muscle cells from different stem cell sources for use in tissue engineering strategies.


This paper explores the potential of engineering smooth muscle tissues to treat vascular diseases, focusing on challenges like sourcing the right cells and creating supportive environments for cell growth. It highlights advances in materials that mimic the body's conditions and the use of 3D fabrication methods for creating complex structures. Additionally, it discusses the significance of mitochondrial function in blood vessel muscle cells. The research emphasizes interdisciplinary efforts and personalized treatments as key to developing effective therapies. The goal is to engineer lab-grown tissues that can repair or replace damaged blood vessels, offering hope for addressing major health challenges associated with vascular diseases.


Assuntos
Músculo Liso , Engenharia Tecidual , Células-Tronco , Miócitos de Músculo Liso , Medicina Regenerativa
18.
Int Heart J ; 65(2): 318-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556339

RESUMO

This study investigated the effects of hydroxycitric acid tripotassium hydrate on right ventricular function, myocardial and pulmonary vascular remodeling in rats with pulmonary hypertension, and possible mechanisms. METHODS: Pulmonary hypertension was induced in male Sprague-Dawley rats by a single subcutaneous injection of monocrotaline or hypoxic chamber. In vivo, inflammatory cytokine (including TNF-α, IL-1ß, IL-6, and TGF-ß, the level of SOD) expression, superoxide dismutase and hydrogen peroxide levels, and p-IκBα and p65 expressions were detected. In vitro, pulmonary artery smooth muscle cell proliferation and migration, ROS production, and hypoxia-inducible factor-1 expression were also studied. RESULTS: Hydroxycitric acid tripotassium hydrate decreased right ventricular systolic pressure and reduced right ventricular fibrosis and pulmonary vascular remodeling in rats with two kinds of pulmonary hypertension. Moreover, the expression of both inflammatory and oxidative stress factors was effectively reduced, and the p65 signaling pathway was found to be inhibited in this study. Additionally, hydroxycitric acid tripotassium hydrate inhibited human pulmonary artery smooth cell proliferation and migration in vitro. CONCLUSIONS: This study shows that hydroxycitric acid tripotassium hydrate can alleviate pulmonary hypertension caused by hypoxia and monocycloline in rats, improve remodeling of the right ventricle and pulmonary artery, and inhibit pulmonary artery smooth muscle cell proliferation and migration. The protective effects may be achieved by regulating inflammation and oxidative stress through the p65 signaling pathway.


Assuntos
Citratos , Hipertensão Pulmonar , Ratos , Animais , Masculino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/induzido quimicamente , Monocrotalina/efeitos adversos , Ratos Sprague-Dawley , Remodelação Vascular , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Artéria Pulmonar , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Modelos Animais de Doenças
19.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479721

RESUMO

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Assuntos
Hipertensão Arterial Pulmonar , Ratos , Animais , Hipertensão Arterial Pulmonar/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Remodelação Vascular/fisiologia , Proliferação de Células , Artéria Pulmonar/patologia , Hipertensão Pulmonar Primária Familiar/patologia , Miócitos de Músculo Liso , Monocrotalina/efeitos adversos , Modelos Animais de Doenças , Histona Desacetilases/metabolismo
20.
Sci Rep ; 14(1): 7517, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553483

RESUMO

The objective of this study is to investigate the expression and influence of adenosine triphosphate-sensitive potassium channel (KATP) in human umbilical arterial smooth muscle cells (HUASMCs) of patients with hypertensive disorders of pregnancy (HDP). Western blotting was used to detect the protein expression levels of KATP inwardly rectifying potassium channel (Kir)6.1 and sulphonylurea receptor (SUR)2B subunits in HUASMCs from patients with normal parturients (NP), gestational hypertension (GH), chronic hypertension (CH), preeclampsia (PE) and chronic hypertension with superimposed preeclampsia (CHSP), respectively. There was no significant difference in the protein expression of Kir6.1 subunit in NP group, GH group, CH group, PE group and CHSP group (P > 0.05). The protein expression of SUR2B subunit was gradually decreased in NP group, GH group, CH group, PE group and CHSP group, with statistically significant difference among the groups (P < 0.05). The altered expression level of KATP SUR2B subunit may be involved in the pathogenesis of HDP. The severity of HDP may be related to the degree of decrease of SUR2B subunit.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Artérias Umbilicais/metabolismo , Pré-Eclâmpsia/genética , Receptores de Sulfonilureias/metabolismo , Miócitos de Músculo Liso/metabolismo , Trifosfato de Adenosina/metabolismo , Canais KATP/genética , Canais KATP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...